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Approximations to the Cumulative Distribution Function of
The Magnitude-Squared Coherence Estimate

Introduction*

The cumulative distribution function of the estimate of magnitude-squared
coherence, obtained by averaging over N statistically independent pieces of
Gaussian data, is available in reference I as a sum of N-I hypergeometric functions.
Direct evaluation of this quantity has recently been simplified in reference 2;
however, it is still a tedious and time-consuming calculation for large N and suffers
from overflow and underflow unless special care is taken in programming. Fur-
thermore, no simple result for obtaining confidence limits is available.

In this report, we investigate the suggestion of Fisher (reference 3) that the
nonlinearity arc tanh (vi") converts the magnitude-squared coherence estimate to a
near-Gaussian random variable. In particular, we present simple approximations
for the mean and variance of this nonlinearly distorted magnitude-squared
coherence estimate and fit a Gaussian cumulative distribution function over a wide
range of: N, the number of pieces averaged in the magnitude-squared coherence
estimate; C, the true magnitude-squared coherence; and P, the values of the
cumulative distribution function. Inversion of the Gaussian cumulative distribution
function affords a simple way of getting confidence limits for specified probabilities
of threshold crossings.

Since the arc tanh (V/') nonlinear distortion takes no account of the known
number, N, of pieces entering the magnitude-squared coherence estimate, an im-
proved nonlinear distortion that utilizes this information is presented; it converts
the magnitude-squared coherence estimates to more nearly a Gaussian random
variable over a wider range of parameters N, C, and P. Evaluation of confidence
limits requires the inversion of this nonlinearity; analytic inversion is not possible,
but a numerical procedure converges rapidly.

Investigation of Arc tanh (VxT) Nonlinearity

The probability density function of the magnitude-squared coherence estimate,
C, as given in reference l, is

p,(x) = (N-I) (iC)N(-x)N2 F(-N, I-N; I; Cx)for0<x< I andNP2, (I); (I-Cx)2N-1

where N is the number of pieces averaged; C is the true magnitude-squared
,4 coherence; and F is a Gaussian hypergeometric function.

Portions of this work, which were done jointly with G. C. Carter (NUSC), are being
prepared for journal publication.

]
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The nonlinearly distorted version of random variable il,which we are interested
in, is

D = arc tanh(V')= ( in(l )) ( I2)

If the nonlinear operation in (2) results in a Gaussian random variable for D, then
we will be interested in the mean and variance of D. This problem is considered
analytically in appendix A; the only closed-form results that we can obtain are listed
below. Let the m-th moment of D be denoted by

I(N,C) = fdx arc tanh (V") m P,(x), (3)
0

where the overbar denotes a statistical average. Then for C = 0, the mean of D is
p,(N,O) = -Cm (N-I) ____2 asN-ao;

2 r(N-l/2) v'N:T23 (4)

the m-th moment is

(N,0) ,.-. r(l + m/2) as N-o;
(N- I)m/2 (5)

and the variance is

o2(N,0) = p2(N,0) - pl (N,0) '., l-R/4 as N.oo
N-I (6)

This last expression is the asymptotic variance of D for C = 0.

'I In order to deduce the fundamental behavior of the mean and variance of D for
* C 0 0, it was necessary to evaluate (3) numerically; this problem is considered in

appendix B. The main results of the numerical investigation are listed below. We
find mean

I(NC) M arc tanh (V '+U) for C >0, (7)

where

B -_C2

2(N-I) (8)

* and variance

o2(N,C)a ! forC>0.
2(N- 1) (9)

The imprecise qualifier C > 0 reflects the fact that the probabilistic behavior of e
and D is distinctly different for C = 0 versus C > 0; for example, compare (6) and
(9). The precise region where (7), (8), and (9) are valid will become clear in later

2
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plots. The result (9) is a slight modification of Fisher that better fits the calculated
values of variance in appendix B and the slope of the cumulative distribution
function plots. Its independence of true magnitude-squared coherence value C is
striking and convenient.

Probabilistic Statements

If D is nearly a Gaussian random variable with mean Ma(N,C) and variance
o2(N,C), then the cumulative distribution function of D, i.e., the probability that D
is less than some threshold T, is given by the approximation

Pz(~mrofDT)f T  dx (X-AI
i p.(T) exProbpD2<oT2/, a ,x (10)

where

0(y) d exp (-u 2/2) (11)

is the cumulative distribution function for a zero-mean unit-variance Gaussian
random variable. A plot of (10) on normal probability paper, with T as the linear
abscissa, yields a straight line with abscissa-intercept M, and slope I/o, since the
nonlinear transformation to plot ordinates in this case is the inverse function* 0I().

The exact cumulative distribution function of D is given by

P 2(T) = Prob {D < T} = Prob (arc tanh VZ'< T)

= Prob{ t< tanh2(T)) = P,(tanh 2(T)), (12)

where we employed (1) and (2) and defined P, as the cumulative distribution func-
tion of C:

A
P1(A) = Prob{C<A}=f dxp,(x). (13)

0

Thus, we can relate cumulative distribution function P2 to the known cumulative
distribution function P, given in reference 1. Programs for the exact evaluation of(13) and (12) are given in appendices C and D, respectively.

The availability of approximation (10) for the cumulative distribution function of
D enables us to give a simple approximation to the cumulative distribution function
P, oft ; namely

P1(A) = Prob { <A = Prob ID < arc tanh (V-)}

= P2 (arc tanh (V"% 1 (arctanhv" ) (14)

where yj and o are given by (7), (8), and (9).

*A superscript I(1) will be used to denote the inverse of a function.

-. 3
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Furthermore, we can now solve the inverse problem of determining a threshold A
for specified values of cumulative distribution function P, and for given parameter
values C and N. From (14), we have

A m tanh2 (', + oO(P)), (13)

where 1A and o are in (7), (8), and (9). Simplification of (15) results in

( -+ap(16)

where

1~~l/22(N-I)J (17)

P = tanh [ v? " (18)

A program for the evaluation of (16), (17), and (18) is given in appendix E.

Plots

Before embarking on the plots of exact cumulative distribution function P2 of
distorted random variable D, as given by (12), we plot the exact cumulative
distribution function P, in (13) of the original random variable C, as given by
reference 1. Plots on normal probability paper for N = 8, 16, 32, 64, 128 are given
in figures 1-5, respectively. In these figures, each dotted straight line corresponds

9 to a Gaussian random variable with mean and variance as derived for magnitude-
squared coherence estimate e in reference 4, page 20. The discrepancy with the
exact cumulative distribution function (in solid lines) indicates that C is not well-
approximated by a Gaussian random variable, especially for the small and large
values of C and the extreme values of probability near .01 and .99.

Plots of the exact cumulative distribution function P2 of D, given by (12), are
presented in figures 6-10 for N = 8, 16, 32, 64, 128. Dotted straight lines
corresponding to a Gaussian random variable satisfying (7)-(10) have been drawn
for every C and N value being considered; however, they have been overdrawn by
the exact cumulative distribution function (12) in some cases and are not visible.
The agreement between exact and Gaussian cumulative distribution functions is
extremely good except for very low values of C and N. Notice also that the curves
are approximately parallel straight lines over a wide range and can, therefore, be
interpolated more easily. Thus, approximate probabilistic relation (10) and its
inverse (16) are very useful and accurate for a wide range of C and N, encompassing
most of the useful values of these parameters.

All figures are grouped at the end of the main text.

4'
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An Improved Nonlinear Transformation

Desired Transformation

The arc tanh (Vi-) nonlinear transformation in (2) is independent of the known
quantity N, the number of pieces used in getting magnitude-squared coherence
estimate C. An improved transformation that utilizes N should, therefore, be
possible and should be investigated to see if a more-nearly Gaussian random
variable can result.

The method to determine this nonlinear transformation is as follows: suppose a
random variable with cumulative distribution function P,(X) is given, and a
nonlinear monotonically increasing transformation,

y = g(x), (19)

that will result in a specified cumulative distribution function P2(Y) is desired. We
have

PI(X) = Probix < X) = Probjg(x) < g(X))

- Prob{ y < g(X)) = P2(g(X)). (20)

Therefore, inverting this equation, the desired nonlinearity is

g(x) = Pn(PI(x)). (21)

Thus, we need to know the inverse of the desired cumulative distribution function
P2.

In particular, if y is Gaussian with mean #A, and variance 02, then

P 2(Y) = 0(I-JA

I P1 (t) = JA1 
+ 00(t), (22)

yielding

g(x) = P + GO'(P1(x)) • (23)

This nonlinear transformation (23) will result in a Gaussian random variable with
mean gland o2. However, the quantities pand P, depend on true coherence C as
well as N; see (7) and (I). Since C is unknown (we are using C to estimate C), (23) is
useless unless it turns out that (23) is substantially independent of C; it can, of

V course, depend on N. To ascertain this possibility, we have plotted, in figures 11,
12, and 13, the nonlinear distortion (23) for N = 8, 16, and 32, respectively; the
program is given in appendix F. Within each figure corresponding to a fixed value
of N, the five distortions (23) for C = .01, .05, .1, .5, and .99 have been plotted as

I5
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solid lines; in addition, the arc tanh (\/) nonlinearity is superimposed in dotted
lines. Furthermore, (23) has only been plotted in the range of probabilities .01, .99]
for P, since this is the range we are concentrating on.

The ideal situation would occur if, within each figure, the same identical
nonlinear function occurred for all five cases of C = .01, .05, .1, .5, and .99; of
course, the function can change with N. Although this fortuitous situation does not
occur precisely, inspection of each of the five cases within each figure reveals a
marked independence of C. Thus, the desired goal of converting magnitude-squared
coherence estimate C to a nearly Gaussian random variable, by means of a
nonlinear transformation that depends only on N, is achievable.

Now, the problem remains to find as simple an analytic transformation as
possible to approximate the solid curves in figures 11, 12, and 13. A great deal of
trial-and-error has resulted in the following candidate. The distorted version of
we adopt is not (2), but rather

DN = arc tanh (g()), (24)

where

gN(X) = In gx )
2(N + 2) (25)

The nonlinear transformation in (24) and (25) depends on N as well as x, but is
independent of the unknown parameter C. The leading term of (25) is, of course,
the earlier result. The correction term goes quickly to zero as x-l, and as N in-
creases, as figures 11, 12, and 13 indicated desirable.

Probabilistic Statements

In order to measure the success of transformation (24) and (25), we need to
evaluate the exact cumulative distribution function of random variable DN. We
have the exact relation

Prob{ DN < T) = Prob{ arc tanh(gN(t)) < T)

= Prob(gN(C) < tanh (T)}

Prob{ C < g(tanh(T))} = P1 (g (tanh(T)) (26)

where g4 is the inverse function of gN, and P, is the cumulative distribution function
of Z. The program for evaluation of (26) is given in appendix G.

If we have succeeded in realizing a Gaussian random variable for DN, then an
approximation to (26) is given by

6 Prob(D< T) 20 (-)(27)
(LTtl
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where we have chosen to use (7), (8), and (9) here also. Therefore, an approximation
to cumulative distribution function P, follows according to

Pn(A) = Prob{ C< A)

= Prob{ arc tanh(gN(C)) < arc tanh(gN(A)))

- Prob{ DN < arc tanh(gN(A)))

9 ( arc tanh(gN(A)) - ,\
/ (28)

Furthermore, (28) affords an approximate expression for the required threshold
value, A, to use for a specified probability value P,; it is

A U A (tanh(p, + o4(P ) )) . (29)

This relation generalizes (15), which applied to the arc tanh (VT) transformation.
The main drawback to (26) and (29) is that we need the inverse function g4 to (25).
(This inverse is not needed for (27) or (28).) When the correction term in (25) is zero
(as for N = o), the inverse relation is simply &L(y) = y2; however, no such simple
relation exists for (25) in general, and g must be found numerically. It would be
worthwhile to uncover a simpler nonlinearity than (25) that still converts e to a
nearly Gaussian random variable, and, at the same time, is easily invertible;
whether this is possible is unknown.

Plots

The final measure of success of transformation (24) and (25) is afforded by
figures 14-18 for the cumulative distribution function of DN for N = 8, 16, 32, 64,
and 128, respectively. The discrepancy from a Gaussian random variable
(dotted lines) is far less than for the corresponding cases in figures 6-10 for the
arc tanh (qx") nonlinearity. Even for as low a value as N = 8, a fair approximation
is given for C = .01.

L, Summary

Two nonlinear transformations have been presented that convert magnitude-
squared coherence estimate C to nearly a Gaussian random variable. They afford

* quick approximate evaluation of the cumulative distribution function of C! and can
be used for arbitrarily large N; see (14) and (28). They also allow for rapid
calculation of confidence limits since these relations can be inverted to find the
threshold required for a specified cumulative distribution function value; see (15)
and (29). A drawback of the latter more-accurate result is that no simple analytical
inversion to nonlinear transformation (25) exists; however, since computer aid
would likely be used to evaluate the expressions given here, inversion of (25) is easily
achieved. A simple recursive scheme was employed by the author; see appendix G.
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Appendix A
Moments of D for C =0

Exact Results

For C = 0, the probability density function in (I), of magnitude-squared
coherence estimate Z!, simplifies to

F~, (N-)(-) -  <,. o, .' N 34!J 2-.
(A-1)

The m-th moment (3) is then given by

( = ,Oxj,) 0"a F,"'4f?) (A-2)

Let

S ,,,I({-), dx dt 2 ,I.,f)/,osktf, (A-3)

to obtain

i (A-4)

For m = 0, the substitution u = cosh(t) immediately yields unit area. So, let
m I in the following. Integrate by parts with

U t A COsIR( (A-5)

and obtain .- I

0~~f ~- (A-6)

We now specialize to m = i; let x = et, dx = x dt, p = 2N-2, and obtain

:(N? ) 2 r r 2"

(A-7)

2 rN-i)
25
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where we employed reference 5, 3.241 4, and reference 6, 6.1.18. Then using
reference 6, 6.1.47, with the parameters selected to eliminate the first correction
term, we find

2-5-7 0 (A-8)

Asymptotic Expansion to One Term

We were unable to locate a closed-form expression for (A-6) when m; 2. A
recursion relation similar to (A-7) is derivable for m • 2 and will be presented later.
But, a useful approximation for any m and for large N follows quickly from (A-6):

Therefore,

(A-1O)

(The reason that (A-10) for m = I does not agree precisely with (A-8) is that (A-8) is
exact to order N-3/2, whereas (A-10) is correct only to order N-1 /2 for m = 1. This
shortcoming is alleviated below.)

* I From (A-10), we can now evaluate the variance of D for C = 0; it is

i -.l y (N,o)-, No)~' .-• L-" L o 0) -., (A-1l)

Asymptotic Expansion to Two Terms

Our starting point is (A-6):

dX
0.) ((A-12)Let

26



TR 6327

toA(x) el I,,, CO ) , XOf , o,,(e)

e+
(A-13)

when we used reference 6, 4.6.38. Then

where

#p e W,,.) arcOS coh(e'+),,ZN-2.

~7~7(A- 15)
We are now in a position to employ Watson's Lemma, reference 7, pp. 102-

103. We need the expansions of f (t) and f 2(t) about t = 0. Consider

4+ -+ OfeC) - I+-E + Olt')

-- +4.2+2 +OC r V. o + -t-O,

r i - (A-16)

Also via reference 6, 4.6.21 and 4.1.24,

t

=)v [, ,+ + + o + 2 {42L, -Z6+-
[ :I+++o + 0 J+25,I+ + .Ofr+0

-}i [+ + t+ + - 0o

+ +
.,m"+ t + ¢ o* [2t + 2+:,'f o0 P)+ -) + 0 f-e-

+ +" (A-17)
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Therefore,

= (2 )~L4I~.t *(A- 18)

and using (A- 16)

(A-19)

Term-by-term integration of (A-19) in integral (A-14) yields the desired result

(N- 2 / (A-20)

Special cases are

- - (A-21)

, 3 A-22)

1 :16

Equation (A-21) agrees precisely with (A-8) when the latter is expanded to two terms
in (N-l)-'. More generally, (A-20) extends (A-10) to two terms in the asymptotic
expansion, and (A-23) generalizes (A-I 1) to two terms. Comparison of (A-20)-(A-23)
with results of the numerical procedure in appendix B reveals very close agreement.
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Third Cumulant of Normalized Dfor C = 0

In order to determine whether random variable D, for C = 0, is approaching a
Gaussian random variable as N increases, we evaluate the third cumulant of the
normalized random variable

r
(A-24)

We have the usual first two cumulants of r:

>~O)0 L (A-25)

Then, using (A-20)-(A-23),

- ,.(A-26)

Since this quantity does not decrease to zero as N increases to 00, the nonlinear
distortion D of magnitude-squared coherence estimate it does not approach
Gaussian, at least in the case when C = 0.

Recursion for jw.(N, 0)

From (A-i) and (A-2),

(f' f

where

I' At')+ 4' N- ) , A' k) =---' •  (A-28)

Let t = V in (A-27) to obtain

, ,No ( :  (-(- +0!""7 ) (A-29)

Let m P I in the following and integrate by parts with u = Am(t), v = -(l-t2)N- I, to
obtain

~(N~o) Jo m d4 (IPA'() (A-30)

29

4



TR 6327

Now we assume that N 0 3 and develop

-,,. -,, o) - 4''4l-
-.J4t 0- eT Y{AO (A-3 1)

Integrate by parts with u = tAm'I(t), v = -(I-t2)N- 2/(2(N-2)I, to obtain

S-(N-o ) (4'r4 - .(A-32)

For m = 1, this immediately reduces to the recursion in (A-7). Furthermore,
for m = 2, the last integral can be evaluated immediately, and we find the con-
venient recursion for the second moment:

2X2 7 r N ?;-A-(2,)O.-21,o2.

(A-33)
The starting value for A2(2,O) follows from (A-30) and (A-28):

I I.!(2,O) itAM) 2 .44 = J . 2f = 21vt2.
0 O (A-34)

We now assume that m 0 3 and conclude the recursion derivation in (A-32).
Integrate by parts with u = Am-2 (t), v = -(I-t2)N- 2 /[2(N-2)], to obtain the final
result

V" Ai , = -4rW3#m( -

(A-35)

(Equation (A-35) actually holds for m = 2 also; in fact, it reduces to (A-33).)

In order to start this recursion, we need to know

2 (A-36)

We already know M2(2,O) in (A-34), so keep m t 3 in the following. Let
x = (I-t)/(l + t) and obtain

2-b2 0 1- X1 (A-37)

Integrate by parts with u = (-In x)m , v = x/(I + x), to obtain
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(A-38)

Now let x = e- and get

P''° ° 2- a0 e +1)() (A-39)

Use reference 6, 23.2.8 and obtain

2z (2,) -(A-40)

where C is the Riemann zeta function. Thus, from reference 6, 23.2.24 and 23.2.25,

"p 2,0j , 2,o -- .(A-41)

The value for 1.4(2,0) requires knowledge of C(3); values of 4(n) for n 0 2 are given in
reference 6, page 811. Thus, we now have all the starting values necessary to use
recursion (A-35) for m 3.

1 .
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Appendix B
Numerical Evaluation of Moments of D

Our starting point is the top line of (A-4), modified to the case for C # 0. We then
express the hyperbolic functions in terms of exponentials and obtain

04(,C) 0F E~ ,6~1 (B-1)

where

E = (,- (2), (B-2)

and p, is given by (I). A program for evaluation of (B-I) is given below. Inputs are
N, C, and M ( = m) in the first three lines. This program was used to deduce the
behaviors listed in (7), (8), and (9).

to Nz128
20 Cz.5
30 M=1
40 SIC0
50 S2=8.'SQR(N)+16'N+1
60 COM NCM
70 F=(N-1)*(1-C :"N
8 PRINT "N =";N,"C =";C,"M =";nSl;$2
90 S3=(FNS(1 )+FNS($2) )*. 5
100 $4=0
11 S5=2
120 S6=(S2-S1)*.5
IS0 S7=2/:3
140 FOR S8=1 TO S5-1 STEP 2
150 S4=S4+FNS(S1+S6*S)
268 NEXT S8
178 Q%(S3+2*S4'*S6*$S*F
180 PRINT USING "M.12DE,7D"; :',5
198 $3=53+S4

208 S4=0
210 55=$5*2
228 S=56*.5
230 GOTO 140

4
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248 DEF FNS T)
256 CON N, C, M
266 EmEXP(-2*T)

I278 Da1-E
280 SnI.E
290 AmCDS)A2
386 RETURN 8.E*D.'S-3FNP(R)*T'NM
318 PNHD
328 DEF FNF21(A,3,C,X)
338 F=F4w1
348 FOR F5uI TO 166
356 F6mF5-i
368 F4uF4*(R+FG)*(DtFG)*X/((CF6)*FS)
370 FaF.F4
386 IF AES(F4)<IE-12*ARS(F) THEN 426
398 NEXT F5
488 DISP 4100 TERMS AT ";A;B;C;X
418 PAUSE
420 RETURN F
430 FHEND
448 DEF FtIP(X)
450 Con N,C,N
468 rc*X

480 RETURN P
490 PHEND
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Appendix C
Program for the Evaluation of (13)

10 N=1
20 OUTPUT 0;"N =";N

30 PLOTTER IS "GRAPHICS"
40 GRAPHICS
5 DATA .01,.025,.05,.1,.2,.3,.4,.5,.6,...8,.9,.$5,.975,.99
60 DIM G(1:15) GRID LINES
70 READ G(*)
80 XM61
90 Yha=FNIriphi(G(15))

100 SCALE O.X%,-Ym,,Ym
11 FOR X=O TO Xm STEP Xm.t10

120 MOVE XYm
130 DRAW X,-Y%
140 NEXT X
150 FOR l1o TO 15

IcO YsFNIrvphi(G I))
170 MOVE 0,Y
18O DRRW Xm,Y
190 NENT I
200 PENUP
210 DATA . 1,,05,.1,.2,.3,.4,.5,.6,.7,.8,. . 5,
226 DIM C(1:13) TRUE COHERENCE VALUES
230 READ C(*)
240 FOR I:3 TO 11
250 CUCI>
260 T=<I-C)^2
270 Biai=T'(I2C. t4.'N

290 SigmaASOR(Sigma)
300 LINE TYPE 3

310 FOR Td-O TO Xat STEP Xm' 10
320 Y=(Td-C-ias',.'Sigma
330 PLOT Td,Y
340 NEXT Td
350 PENUP

•. 360 LINE TYPE I
370 FOR TdwO TO Xm STEP Xh' 00

* 38e TcwTd
390 YwFNCderSc(N,C,T¢)
400 PLOT TdFNIn*phikY)
410 IF Y. .99 THEN 430
420 NEX7; Td
430 PENUP
440 NEXT I
4*,. NEXT K
460 END
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478 DEF FNCdfnsc(N,C,Ct)
48 0.1-Ct
408 P.C*Ct
580 HUI-P
518 Pa..14
528 TnewnB
538 8aTa1
548 FOR Kai TO N-2
558 TolduTnew
568 TnewmT
570) Ts((2*K-1.(N-K)*P)*Tnew-(K-1>*O*Tojld)*RK
588 S=S.T
590 NEXT K
600 P=Ct*O(IC)/H)AN*S
618 RETURN P
628 FNEND
638 DEF FNlnvphi(X)
648 IF (X>=8) AND (X<a1) THEN 670
658 PRINT "ARGUMENT ";X;"IS DISALLOWED FLIP IWIEP$E P141 FUNCTION"
660 STOP
678 IF (X>0) AND kX<1) THEN 788
680 Ps9.99999999999E99*(2*X-1)~
698 GOTO 750
788 P=>:
718 IF X>.5 THEN Pa.5-(X-.5)
728 PzSOR(-2*LOG(P).
738 P.P-(2.515517,P*..802853+P*.810328) ,,+1tP*,1.432,4788tP*(.I89269tPt.081388))

740 IF X<.5 THEN P=-P
758 RETURN P
768 FNEND
778 DEF FNTanhOON
788 S.EXP(2*X>
798 RETURN (S-1)'(S*1)
888 FNEND
810 DEF FNArctarnh(X)
820 RETURN .5*LOG((1+X)/,(1-XY'
830 FNEND
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Appendix D
Program for the Evaluation of (12)

The functions Cdfmsc, lnvphi, Tanh, and Arctanh have already been listed in
appendix C.

10 Na8

20 OUTPUT 0;"N =";N
30 PLOTTER IS "GRAPHICS"
40 GRAPHICS
50 DATA..
60 DIM G(1:15) GRID LINES
70 READ G(*)
80 Xm4
90 Ym=FNInvphi(G(15))
109 SCALE 9,X&,-Ym,Ym
110 FOR X=e TO Xm STEP Xm/8
120 MOVE X,Ym
130 DRAW X,-Yf,
149 NEXT X
150 FOR I" TO 15
160 YmFNInvphi(G(I))
179 MOVE 0,Y
180 DRAW Xm,Y
13G NEXT I
290 PENUP
219 DATA .01,.95,.1,.2,.3,.4,.5,.6,.7,.8,. ,.95. 9
220 DIM C(1:13) TRUE COHERENCE VALUEL
230 READ C(*)
240 FOR 1=1 TO 13
250 CaC(I)
260 B=(I-C2)/(2*(N-1))
270 Mean=FNrctanh(.SOR(C+B))
280 Sigma I-"SQR(2*(N- )
299 LINE TYPE 3
300 FOR Td=O TO Xm STEP Xm.'199

310 Ya (Td-Moan), Sigooa
320 PLOT Td,Y
339 NEXT Td
340 PENUP
350 LINE TYPE I
369 FOR Td=O TO ;:h STEP Xm./190
370 TcwFIT&nh(Td- 2
3,-' Y FNCdfmso(N,C:,Tc.
390 PLOT Td.FNIvphi, ,
409 IF Y>.99 THEN 420
die NEXT Td
4-0 PENUP
430 NVEXT I
440 NEx:T K
450 END
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Appendix E
Program for the Evaluation of (16)

The functions Invphi and Tanh have already been listed in appendix C.

10 INPUT P,N,C IPROBABILITY,PIECES,OHEPENCE

20 A1phazSQR(C+(1-C*C)/,2*(N-1 ))

30 TmFIInvphicP.I.SQR<2*(N-lI))
40 Set&-FNTanh(T>
50 R=u((Rlpha+Beta)'( lApha*eta) )^2
60 PRINT R,P;N;C
70 END

39/40
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Appendix F
Program for the Evaluation of (23)

The functions Cdfmsc, Invphi, and Arctanh have already been listed in appendix
C.

10 C=. I
20 N=32
30 PRIHIT " a";C,"N =";N
40 B=(-C*C)-/2*(N-I))
5 MIean=FNrctanh(SQR(C B))
60 Sigmaul,SOR(2*(N-1)
70 PLOTTER IS "GRAPHICS"
8e GRAPHICS
90 SCALE 0,1,-.5,3.5
10 GRID .1,.5
110 PENUP
120 LINE TYPE 3
130 FOR XnO TO .995 STEP .0e5
140 Y=FNRrctanh(SQR(X') ORIGINAL NOH-LINEARITY
150 PLOT XY
160 NEXT X
170 PENUP
180 LINE TYPE 1
190 FOR Xz.002 TO .998 STEP .002
200 PIFNCdfmsc(N,CX)
210 IF PIV.01 THEN 250
220 IF P1>1-.01 THEN 260
230 Y=Men Sigma*FNInvphi(Fl) D LESIREP liOtN-LINEARITY
240 PLOT X,Y
250 NEXT X
260 END

41/42
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Appendix G
Program for Evaluation of (26)

The functions Cdfmsc, lnvphi, Tanh, and Arctanh have already been listed in
appendix C.

10 fin=32
20 OUTPUT 0;"N =";N
30 PLOTTER IS "GRAPHICS"
40 GRAPHICS

50 DATA .01,.0.5,.1,.2,.3,.4,.5,.6..7,.8,.9.95..975,.99
60 DIM G(1:15) 1 GRID LINES
70 READ G(*)

s0 Xmu4
90 YmwFNInvphi(G(15))
100 SCALE 0,XM,-"mY
110 FOR X-0 TO Xm STEP Xm/8
120 MOVE XYm
130 DRAW X,-Ym
140 NEXT X
150 FOR 1-1 TO 15
160 Y=FNInvphi(G(I))
170 MOVE 0,Y
180 DRAW XmpY
198 NEXT I
200 PENUP
220 DATA .01,.05,. 1,.2,.3,.4,.5,•6,.7,.-, .9.95, •
220 DIM C(1:13.) TRUE COHERENCE VALUE:.

230 READ C,*)
240 FOR 1-1 TO 13
250 C=C(I)

I ~~260 DB -C "2)-"2*N(- 1) )

I 270 Mebn=FNArct anh;SQR(C +E))
* 280 g,,a 1 .SQR (2- * N-I1)

290 LINE TYPE 3
.300 FOR Td=O TO Xm STEP Xb.," 120
310 Y=(Td-Mean).'Si gm

• 320 PLOT Td,Y
330 NEXT Td

340 PENUP

350 LINE TYPE 1
360 FOR TdoO TO Xm STEP xm;lo0
370 Tc=FNTnh(Td)
3CO Tc=FNInvg(Tc,N) DIS.'IORTION IS g(N)

390 ';.FNCdfmc.,N,C,Tc)
400 PLOT Td,FNInvphi Y.)
410 IF Y, .99 THEN 430
42A NE,:T 7d

430 PENUP
440 NEXT I
450 NE: T
460 END
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47fl DEF F~kgYN
460 Xls(Y,1.5/N)A2
490 X2=X1*.01
580 FI=SQR(XI )..5*(1-X1 )'(*H)*LOG(.5*(N-1 )*XI ,'(N.2)-Y

1 ~~~~~510 FSOXZ.*1Xr(1HLO.*C1.xz (i -
520 IF ARS(FI-F2)<IE-1S THEN RETURN X2
530 TuCXl*F2-XZOFI)/(F2-FI.
540 XluX2
550 X2sT
560 FI=F2
570 tROTh) 510
580 PHEND
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